Telegram Group & Telegram Channel
Расскажите про линейные модели: где используются и как обучаются?

Такие модели выявляют линейные зависимости в данных. Наиболее известны линейная и логистическая регрессии. Первая применяется для предсказания значения зависимой переменной, для задачи регрессии. Вторая — для задач классификации.

🎓 Обучение линейных моделей можно проводить с помощью градиентного спуска. Для линейной и логистической регрессии процесс обучения имеет схожие шаги, но различается используемой функцией потерь.
▪️Линейная регрессия.
Её обучение заключается в нахождении оптимальных коэффициентов, или весов, перед признаками в уравнении прямой. Чтобы найти веса с помощью градиентного спуска, сначала нужно инициализировать вектор весов случайными числами. Затем нужно вычислить градиент функции потерь (обычно MSE — среднеквадратичное отклонение) и обновить веса, вычитая из них произведение градиента с learning rate. Шаги повторяют, например, до тех пор, как функция потерь не стабилизируется.
▪️Логистическая регрессия.
Главное отличие от линейной регрессии заключается в функции потерь — здесь используется log-loss (логарифмическая функция потерь). Процедура обновления весов остается схожей.

#машинное_обучение



tg-me.com/ds_interview_lib/266
Create:
Last Update:

Расскажите про линейные модели: где используются и как обучаются?

Такие модели выявляют линейные зависимости в данных. Наиболее известны линейная и логистическая регрессии. Первая применяется для предсказания значения зависимой переменной, для задачи регрессии. Вторая — для задач классификации.

🎓 Обучение линейных моделей можно проводить с помощью градиентного спуска. Для линейной и логистической регрессии процесс обучения имеет схожие шаги, но различается используемой функцией потерь.
▪️Линейная регрессия.
Её обучение заключается в нахождении оптимальных коэффициентов, или весов, перед признаками в уравнении прямой. Чтобы найти веса с помощью градиентного спуска, сначала нужно инициализировать вектор весов случайными числами. Затем нужно вычислить градиент функции потерь (обычно MSE — среднеквадратичное отклонение) и обновить веса, вычитая из них произведение градиента с learning rate. Шаги повторяют, например, до тех пор, как функция потерь не стабилизируется.
▪️Логистическая регрессия.
Главное отличие от линейной регрессии заключается в функции потерь — здесь используется log-loss (логарифмическая функция потерь). Процедура обновления весов остается схожей.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/266

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA